Survey of the Phase Formation in the $Yb_2O_3 - Ga_2O_3 - MO$ and $Yb_2O_3 - Cr_2O_3 - MO$ Systems in Air at High Temperatures (*M*: Co, Ni, Cu, and Zn)

NOBORU KIMIZUKA* AND EIJI TAKAYAMA

National Institute for Research in Inorganic Materials, 1-1, Namiki, Sakuramura, Niiharigun, Ibaraki-ken, Japan 305

Received December 10, 1981; in final form March 15, 1982

The phase relations in the Yb₂O₃-Ga₂O₃-CoO system at 1300 and 1200°C, the Yb₂O₃-Ga₂O₃-NiO system at 1300 and 1200°C, the Yb₂O₃-Ga₂O₃-CuO system at 1000°C and the Yb₂O₃-Ga₂O₃-ZnO system at 1350 and 1200°C, the Yb₂O₃-Cr₂O₃-CoO system at 1300 and 1200°C, the Yb₂O₃-Cr₂O₃-CuO system at 1300 and 1200°C, the Yb₂O₃-Cr₂O₃-CuO system at 1300 and 1200°C, the Yb₂O₃-Cr₂O₃-CuO system at 1000°C, and the Yb₂O₃-Cr₂O₃-ZnO system at 1300 and 1200°C were determined in air by means of a classical quenching method. YbGa-CoO₄ (a = 3.4165(1) and c = 25.081(2) Å), YbGaCuO₄ (a = 3.4601(4) and c = 24.172(6) Å), and YbGaZnO₄ (a = 3.4153(5) and c = 25.093(7) Å), which are isostructural with YbFe₂O₄ (space group: $R \bar{3}m$, a = 3.455(1) and c = 25.109(2) Å), were obtained as stable phases. In the Yb₂O₃-Ga₂O₃-NiO system and the Yb₂O₃-Cr₂O₃-MO system (M: Co, Ni, Cu, and Zn), no ternary stable phases existed.

Introduction

Recently Kimizuka and Takayama reported a series of new compounds, $LnABO_4$, with layered structure (*Ln*: Y, Ho, Er, Tm, Yb, and Lu; A: Fe, Ga, and Al; B: Mg, Fe, Mn, Co, Cu, and Zn) (1-2)which are isostructural with YbFe₂O₄ (space group: $R\bar{3}m$, a = 3.455(1) and c =25.109(2) Å) and established the phase diagrams of the Yb₂O₃-Fe₂O₃-CoO system at 1350 and 1300°C, the Yb_2O_3 -Fe₂O₃-NiO system at 1300 and 1200°C, the Yb₂O₃- Fe_2O_3 -CuO system at 1000°C, and the Yb₂O₃-Fe₂O₃-ZnO system at 1300°C in air (3). YbFeCoO₄, YbFeCuO₄, and Yb FeZnO₄ are stable in air at 1350, 1000, and 1300°C, respectively. In the Yb₂O₃-Fe₂O₃-NiO system at 1300 and 1200°C, no ternary

compounds existed. The phase diagrams of the Ln_2O_3 -Fe-Fe₂O₃ systems at 1200°C were reported by Kimizuka and Katsura (4-5) and Katsura *et al.* (6). As an example, the phase diagram of the Y_2O_3 -Fe-Fe₂O₃ system at 1200°C is illustrated with equilibrium oxygen partial pressures in Fig. 1 (4). The compounds with the YbFe₂O₄ type of structure are stable above certain temperatures (3-6). The crystal structure analyses of a series of new compounds, (YbFeO₃)_nFeO (n = 1, 2, 3, ...), were performed by Kato *et al.* (7-8) and Matsui *et al.* (9).

In the present paper, we report the phase relations of the Yb_2O_3 -Ga_2O_3-CoO system at 1300 and 1200°C, the Yb_2O_3 -Ga_2O_3-NiO system at 1300 and 1200°C, the Yb_2O_3 -Ga_2O_3-CuO system at 1000°C and the

0022-4596/82/090278-07\$02.00/0 Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved.

^{*} To whom all correspondence should be addressed.

FIG. 1. The phase diagram of the Y_2O_3 -Fe-Fe₂ O_3 system at 1200°C. Numbers in three solid phases indicate equilibrium oxygen partial pressures $(-\log P_{O_2})$ measured by means of a stabilized zirconia cell.

Yb₂O₃-Ga₂O₃-ZnO system at 1350 and 1200°C, the Yb₂O₃-Cr₂O₃-CoO system at 1300 and 1200°C, the Yb₂O₃-Cr₂O₃-NiO system at 1300 and 1200°C, the Yb₂O₃-Cr₂O₃-CuO system at 1000°C, and the Yb₂O₃-Cr₂O₃-ZnO system at 1300 and 1200°C, which were determined in air by means of a classical quenching method.

Experimental

Starting materials. procedure, and equipment. Ga₂O₃ (99.9%) and reagentgrade Cr₂O₃ were used as starting materials. The other starting materials have the same purity grades as reported in the previous paper (3). Pretreatment of the starting materials, procedure, and equipment employed in the present experiment were the same as previously reported (3). The heating period of each sample was between 7 days and $1\frac{1}{2}$ months. Each of the heattreated samples was analyzed by means of conventional X-ray powder diffraction and identified from the ASTM cards. Sample weights were checked before and after heat treatment.

Results and Discussion

I. The Phase Relations in the Yb_2O_3 - Ga_2O_3 -MO Systems in Air at High Temperatures (M: Co, Ni, Cu, and Zn)

(a-1) The phase relations in the Yb_2O_3 - Ga_2O_3 -CoO system in air at 1300°C. In the Yb₂O₃-Ga₂O₃ system, there was a stable Yb₃Ga₅O₁₂ phase (garnet type of structure). No YbGaO₃ phase existed. Marezio et al. (10) reported that they synthesized YbGaO₃ compound (distorted perovskite structure) at 1000°C under 70 kbar and it was an unstable phase under 1 atmosphere. A stable Ga_2CoO_4 phase (spinel type of structure) existed in the Ga₂O₃-CoO system. There was no binary stable phase in the $CoO-Yb_2O_3$ system. In the Yb_2O_3 -Ga₂O₃-CoO system, there was a stable YbGaCoO₄ phase (a = 3.4165(1) and c =25.081(2) Å) which was isostructural with YbFe₂O₄ compound (space group: $R\bar{3}m$, a = 3.455(1) and c = 25.109(2) Å) (7).

(a-2) The phase relations in the Yb_2O_3 -Ga₂O₃-CoO system in air at 1200°C. In the Yb₂O₃-Ga₂O₃ system and the Ga₂O₃-CoO system, there were the same phases as in those at 1350°C. No binary stable phase existed in the CoO-Yb₂O₃ system. The YbGaCoO₄, which was prepared at 1350°C in air, decomposed into Yb₂O₃, CoO, and Yb₃Ga₅O₁₂ after 1 week at 1200°C. No ternary stable phase existed in the Yb₂O₃-Ga₂O₃-CoO system at 1200°C in air.

(b) The phase relations in the Yb₂O₃-Ga₂O₃-NiO system in air at 1300 and 1200°C. In the Yb₂O₃-Ga₂O₃ system, there was a stable Yb₃Ga₅O₁₂ phase at 1200°C. In the Ga₂O₃-NiO system, there was one stable Ga₂NiO₄ phase (spinel type of structure). No binary stable phase existed in the NiO-Yb₂O₃ system at 1300 and 1200°C as previously reported in (3). No ternary stable phases existed in the Yb₂O₃-Ga₂O₃-NiO system in air at 1300 and 1200°C.

(c) The phase relations in the Yb_2O_3 - Ga_2O_3 -CuO system in air at 1000°C. In the $Yb_2O_3-Ga_2O_3$ system, we concluded that a stable Yb₃Ga₅O₁₂ existed. However, when we heated a mixture of Yb_2O_3 : $Ga_2O_3 =$ 3:5 (in mole ratio) for $1\frac{1}{2}$ months at 1000°C. we could not obtain a single phase of Yb₃ Ga₅O₁₂ but a mixture of Yb₂O₃, Yb₃Ga₅O₁₂, and Ga₂O₃ phases. The Yb₃Ga₅O₁₂ which was prepared at 1350°C was heated at 1000°C for 1 month and no decomposition was observed. In the Ga_2O_3 -CuO and $CuO-Yb_2O_3$ systems, a stable Ga_2CuO_4 (spinel type of structure) and a stable Yb₂ Cu_2O_5 ($Cu_2In_2O_5$ type of structure) (12) existed, respectively. In the Yb₂O₃-Ga₂O₃-CuO system, there was a stable YbGaCuO₄ (a = 3.4601(4) and c = 24.172(6) Å) which was isostructural with $YbFe_2O_4$ (7).

(d-1) The phase relations in the Yb₂O₃-Ga₂O₃-ZnO system in air at 1350°C. In the Ga₂O₃-ZnO system, there was a stable Ga₂ZnO₄ phase (spinel type of structure) and no binary stable phase existed in the ZnO-Yb₂O₃ system. In the Yb₂O₃-Ga₂O₃-ZnO system, there was a stable YbGaZnO₄ phase (a = 3.4153(5) and c = 25.093(7) Å) which was isostructural with YbFe₂O₄ (7).

(d-2) The phase relations in the Yb_2O_3 -Ga_2O_3-ZnO system at 1200°C in air. The phase relations in the Yb_2O_3 -Ga_2O_3 system, the Ga_2O_3-ZnO system, and the ZnO-Yb_2O_3 system are the same as those at 1350°C in air. In the Yb_2O_3 -Ga_2O_3-ZnO system, no ternary phase existed stably. The YbGaZnO₄, which was prepared at 1350°C, decomposed into Yb_2O_3, ZnO, and Yb_3Ga_5O_{12} phases after 1 week at 1200°C.

II. The Phase Relations in the

Yb_2O_3 - Cr_2O_3 -MO Systems in Air at High Temperatures

(a) The phase relations in the Yb_2O_3 -Cr₂O₃-M'O systems in air at 1300 and 1200°C (M': Co, Ni, and Zn). In the Yb₂O₃-Cr₂O₃ system at 1300 and 1200°C, there was a stable YbCrO₃ phase (distorted perovskite type of structure). No Yb₃ Cr₅O₁₂ existed. Schneider *et al.* (11) reported that there was a stable YbCrO₃ phase in the Yb₂O₃-Cr₂O₃ system in air above 1000°C under 1 atm. In the Cr₂O₃-M'O systems, there was one stable Cr₂ $M'O_4$ phase (spinel type of structure). No binary stable phase existed in the M'O-Yb₂O₃ systems. No ternary stable phases existed in the Yb₂O₃-Cr₂O₃-M'O systems.

(b) The phase relations in the Yb_2O_3 - Cr_2O_3 -CuO system in air at 1000°C. In the $Yb_2O_3-Cr_2O_3$ system at 1000°C, there was a stable YbCrO₃ phase. No Yb₃Cr₅O₁₂ existed. A stable Cr₂CuO₄ phase (spinel type of structure) in the Cr₂O₃-CuO system existed. No ternary phase existed stably at 1000°C. The phase diagrams of the Yb_2O_3 - Ga_2O_3 -CoO system at 1300 and 1200°C, the Yb₂O₃-Ga₂O₃-NiO system at 1300 and 1200°C, the Yb₂O₃-Ga₂O₃-CuO system at 1000°C, and the Yb₂O₃-Ga₂O₃-ZnO system at 1350 and 1200°C are shown in Figs. 2a-d. The phase diagrams of the Yb₂O₃- $Cr_2O_3-M'O$ systems at 1300 and 1200°C are shown in Fig. 3a and the Yb₂O₃-Cr₂O₃-CuO system at 1000°C is shown in Fig. 3b. The experimental data points which are necessary and sufficient for establishing the above phase diagrams were summarized in Table I.

As previously reported (3), two stable phases exist YbFeO₃ (distorted perovskite type of structure) and $Yb_3Fe_5O_{12}$ (garnet type of structure), in the Yb₂O₃-Fe₂O₃ system above 1000°C under 1 atm. On the other hand, the YbCrO₃ phase is stable in the $Yb_2O_3-Cr_2O_3$ system, and the Yb_3 Ga_5O_{12} phase is stable in the Yb₂O₃-Ga₂O₃ system. This can be easily explained by site preferences of three cations, Fe³⁺, Cr³⁺, and Ga³⁺. In order to elucidate cation distribution in the spinel-type compounds, Mc-Clure calculated the difference of crystal field stabilization energies between octahedral and tetrahedral sites for many cations (13). According to his calculation, Cr^{3+} has

FIG. 2. (a-1) The phase diagram of the Yb₂O₃-Ga₂O₃-CoO system in air at 130°C. (a-2) The phase diagram of the Yb₂O₃-Ga₂O₃-CoO system in air at 120°C. (b) The phase diagram of the Yb₂O₃-Ga₂O₃-NiO system in air at 1300 and 120°C. (c) The phase diagram of the Yb₂O₃-Ga₂O₃-CuO system in air at 100°C. (d-1) The phase diagram of the Yb₂O₃-Ga₂O₃-CaO system in air at 135°C. (d-2) The phase diagram of the Yb₂O₃-Ga₂O₃-ZnO system in air at 135°C. (d-2) The phase diagram of the Yb₂O₃-Ga₂O₃-CaO system in air at 120°C.

very large octahedral site preference energy, while Fe^{3+} and Ga^{3+} have no preference energies. Therefore, Cr^{3+} prefers octahedral sites to tetrahedral sites compared with Fe^{3+} and Cr^{3+} . In addition, Ga^{3+} prefers tetrahedral sites to octahedral sites, in spite of the spherical electronic configuration similar to that of Fe^{3+} (10). Fe^{3+} , Cr^{3+} , and Ga^{3+} occupy both the tetrahedral and the octahedral sites in the garnet-type compounds, while they occupy only an octahedral site in the perovskite-type compounds. The site preference is a possible reason why YbGaO₃ and Yb₃Cr₅O₁₂ are not stable at 1

System	Composition (mole ratio)	Phases ^a	Period (days)	System	Composition (mole ratio)	Phases ^a	Period (days)
Yb ₂ O ₃ -Ga ₂ O ₃ -CoO	50:25:25	Yb ₂ O ₃ , 3–5–12,	12	Yb ₂ O ₃ -Ga ₂ O ₃ -NiO	40:20:40	Yb ₂ O ₃ , NiO, 3–5–12 NiO 2 5 17 2 1 4	0 2
at 1300 C	30:10:60	1-1-1-4 1-1-1-4, Yb ₂ O ₃ , CoO	12	at 1200°C	10:65:25	2-1-4, Ga ₂ O ₃ , 3-5-12	0
	10:40:50 20:25:55	3-5-12, CoO, 2-1-4 1-1-1-4 CoO	12	Yb ₂ O ₃ -Ga ₂ O ₃ -ZnO	50:30:20	Yb ₂ O ₃ , 1-1-1-4,	10
		3-5-12	1	at 1350°C	30:10:60	3-5-12 ZnO. 1-1-1-4. Yb,0,	12
	10:65:25	2-1-4, 3-5-12, Ga.O	12		20:25:55	ZnO, 1–1–4,	12
	25:25:50	1-1-1-4	12		10 - 40 - 50	3-5-12 ZnO 2-1-4 3-5-12	21
Yb ₂ O ₃ -Ga ₂ O ₃ -CoO	50:25:25	Yb ₂ O ₃ , 3–5–12, CoO	15		10:65:25	2-1-4, 3-5-12, Ga ₂ O ₃	10
at 1200°C	10:40:50	3-5-12, CoO, 2-1-4	15		10:10:20	1-1-1-4	7
	10:70:20	3-5-12, 2-1-4,	15	Yb"O"–Ga"O"–ZnO	40:20:40	Yb _* O _* . ZnO. 3–5–12	15
		Ga_2O_3		at 1200°C	10:40:50	3-5-12, ZnO, 2-1-4	15
Yb2O3-Ga2O3-CuO	60:20:20	Yb ₂ O ₃ , 3-5-12, 2-2-5	14		10:70:20	3-5-12, 2-1-4, Ga ₂ O ₃	15
at 1000°C	30:25:45	2-2-5, 1-1-1-4,	14	Yb ₂ O ₃ -Cr ₂ O ₃ -M'O	40:20:40	Yb ₂ O ₃ , 1–1–3, M'O	10
	20 - 10 - 70	3-3-12 2 2 5 CiiO 1-1-1-4	14	at 1300 and	15:35:50	1-1-3, M'0, 2-1-4	10
	10:25:65	CuO, 2-1-4, 3-5-12	1 4	1200°C	20:65:15	1-1-3, 2-1-4, Cr ₂ O ₃	10
	25:35:40	1-1-1-4, CuO,	14	Yb ₂ O ₃ -Cr ₂ O ₃ -CuO	60:20:20	Yb ₂ O ₃ , 2-2-5, 1-1-3	15
		3-5-12		at 1000°C	25:15;60	2-2-5, CuO, 1-1-3	15
	15:65:20	2-1-4, 3-5-12, Ga ₂ O ₃	14		10:30:60	CuO, 1–1–3, 2–1–4	15
	10: 0:20	2-2-5	7		20:65:15	1-1-3, 2-1-4, Cr ₂ O ₃	15
	10:10:20	1-1-1-4	10				

^a 3-5-12: Yb₃Ga₅O₁₂; 1-1-1-4: YbGaMO₄; 2-2-5: Yb₂Cu₂O₅; 2-1-4: A₂MO₄; 1-1-3: YbCrO₃.

The Phase Relations in the Yd $_{2}O_{3}-A_{2}O_{3}-MO$ Systems in Air (A: Ga and Ct; M: Co, Ni, Cu, and Zn)

TABLE I

KIMIZUKA AND TAKAYAMA

FIG. 3. (a) The phase diagram of the Yb₂O₃-Cr₂O₃-M'O systems in air at 1300 and 1200°C (M': Co, Ni, and Zn). (b) The phase diagram of the Yb₂O₃-Cr₂O₃-CuO system in air at 1000°C.

atm. These features of three cations may also affect the stability of the $LnABO_4$ type of compounds with layer structure. In the $LnABO_4$ compounds, A and B cations are both surrounded by five oxygen ions forming the trigonal bipyramid. Crystal field stabilization energies for trigonal bipyramidal geometry have already been reported by Wood (14). In 3d³ and 3d⁸ configurations, it was calculated to be (25/4)Dq for a normal octahedral definition of Dq. This value is small compared with that of the octahedral site (12Dq). Cr³⁺ (3d³) has, therefore, a large octahedral site preferential energy compared to that of the trigonal bipyramidal site. This is one of the possible reasons why $LnCrBO_4$ compounds could not be prepared. The same explanation is possible for divalent cations. We could not obtain any $LnANiO_4$ compounds, while $LnAMnO_4$ could be synthesized very easily (1-2). Ni²⁺ $(3d^8)$ like Cr³⁺, has large octahedral site preferential energy compared to that of the trigonal bipyramidal site, whereas Mn²⁺ has no preferential energy.

In conclusion, the phase relations in the Yb₂O₃-Ga₂O₃-CoO system at 1300 and 1200°C, the Yb₂O₃-Ga₂O₃-NiO system at 1300 and 1200°C, the $Yb_2O_3-Ga_2O_3-CuO$ system at 1000°C, and the Yb₂O₃-Ga₂O₃-ZnO system at 1350 and 1200°C were determined in air. The YbGaCoO₄, YbGaCuO₄, and YbGaZnO₄ phases which are isostructural with YbFe₂O₄ were stable at 1300, 1000, and 1350°C in air, respectively. The phase relations in the Yb₂O₃-Cr₂O₃-CoO system, the Yb₂O₃-Cr₂O₃-NiO system, and the Yb_2O_3 -Cr₂O₃-ZnO system at 1300 and 1200°C in air and the Yb₂O₃-Cr₂O₃-CuO system in air at 1000°C were established and no ternary stable phases existed.

Since we determined the stability conditions of $YbABO_4$ compounds at high temperatures in air, our research group will begin to study physical properties, such as magnetic property, Mössbauer spectroscopy, and neutron diffraction analysis, of $LnABO_4$ compounds with layered structure.

Acknowledgment

The present authors express their sincere thanks to Mr. Masami Sekita of the National Institute for Research in Inorganic Materials for his helpful discussion.

References

- 1. N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 40, 109 (1981).
- 2. N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 43, 278 (1982).

- 3. N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem., in press (1982).
- 4. N. KIMIZUKA AND T. KATSURA, J. Solid State Chem. 13, 176 (1975).
- 5. N. KIMIZUKA AND T. KATSURA, J. Solid State Chem. 15, 246 (1975).
- T. KATSURA, T. SEKINE, K. KITAYAMA, T. SUG-IHARA, AND N. KIMIZUKA, J. Solid State Chem. 23, 43 (1978).
- K. KATO, I. KAWADA, N. KIMIZUKA, AND T. KATSURA, Z. Kristallogr. 141, 314 (1975).
- K. KATO, I. KAWADA, N. KIMIZUKA, I. SHINDO, AND T. KATSURA, Z. Kristallogr. 143, 278 (1976).

- 9. Y. MATSUI, K. KATO, N. KIMIZUKA, AND S. HO-RIUCHI, Acta Crystallogr. Sect. B 35, 561 (1979).
- 10. M. MAREZIO, J. P. REMEIKA, AND P. D. DERNIER, Mater. Res. Bull. 1, 247 (1966).
- S. J. SCHNEIDER, R. S. ROTH, AND J. L. WARING, J. Res. Natl. Bur. Stand. Sect. A 65, 367 (1961).
- 12. Von G. Bergerhoff and H. Kasper, Acta Crystallogr. Sect. B 24, 388 (1968).
- 13. D. S. MCCLURE, J. Phys. Chem. Solids 3, 311 (1957).
- 14. J. S. WOOD, in "Progress in Inorganic Chemistry" (S. J. Lippard, Ed.), Vol. 16, p. 295, Wiley, New York (1972).